Nährstoffkreislauf
Die im Gewässer von Tieren und Pflanzen zum Wachstum aufgenommenen Nährstoffe gelangen durch biochemische Prozesse überwiegend zurück ins Wasser.
Grundlegende Bedeutung für den Nährstoffkreislauf im Gewässer kommt den hier lebenden Wasserpflanzen zu. Sie sind die wesentlichen Produzenten organischer Substanz, von der das tierische und bakterielle Leben im Wasser direkt oder indirekt abhängt. Als Produzenten werden Organismen bezeichnet, die in der Lage sind aus anorganischen Verbindungen – also Wasser, Nährsalzen, Kohlensäure – unter Mitwirkung von Sonnenlicht organisches Material aufzubauen. Dieser Prozess wird zusammenfassend als Photosynthese bezeichnet. Im Zuge der pflanzlichen Photosynthese wird Sauerstoff freigesetzt. (siehe Grafik)
In natürlichen Gewässern ist eine Vielzahl von gelösten Stoffen enthalten. Die für das Wachstum der Wasserpflanzen wichtigsten Nährstoffe sind Kohlenstoff, Stickstoff und Phosphor. Sie kommen im Pflanzenkörper im Mittel im Gewichtsverhältnis C:N:P 40:7:1 vor.
Beim Aufbau organischen Material wird Sauerstoff freigesetzt, bei seinem Abbau wird Sauerstoff verbraucht.
Derjenige Nährstoff, der in geringster Menge vorhanden ist, begrenzt das Pflanzenwachstum. Der am häufigsten produktionsbegrenzende Nährstoff im stehenden Gewässer ist der Phosphor, weil das Verhältnis seiner Verfügbarkeit zu der von den Pflanzen benötigten Menge sehr ungünstig ist. Zeitweise kann bei Phosphorüberschuss auch Stickstoff limitierend sein. Kleintiere verwandeln über Stoffwechselvorgänge das von Algen und Pflanzen aufgebaute organische Material, das sie fressen, wieder zurück in anorganische Stoffe. Diese Nährstoffe entstehen gleichzeitig auch durch den bakteriellen Abbau abgestorbener Pflanzen- und Tierreste. Die jeweils unter Sauerstoffverbrauch wieder freigewordenen Nährstoffe kehren dann (zumindest teilweise) in den Kreislauf zurück.
Das Angebot an Nährstoffen beeinflusst die Pflanzenproduktion.
Solange bei den Abbauvorgängen ausreichend Sauerstoff zur Verfügung steht (aerobe Bedingungen), kann die organische Substanz bis in ihre anorganischen Ausgangsprodukte zersetzt, mineralisiert werden. Steht nicht genügend Sauerstoff zur Verfügung (anaerobe Bedingungen), endet der Abbau bei Zwischenprodukten. Ideal ist es, wenn in einem Gewässer nur so viele Nährstoffe enthalten sind, dass die daraus wachsende organische Masse nicht zu groß wird. Denn nur dann reicht nach ihrem Absterben der Sauerstoff für einen aeroben Abbau aus. Zusätzlich verbleibt auch für ein Tierleben genügend Sauerstoff. Dieses Gleichgewicht wird gestört, wenn im Wasser zu viele Nährstoffe vorhanden sind und das Pflanzenwachstum dadurch erheblich ansteigt (Eutrophierung). Liegt die Pflanzenbiomasse hauptsächlich als mikroskopisch kleine Algen (Phytoplankton) vor, ist dies weitaus kritischer als das Wachstum von Wasserpflanzen, denn erstere wachsen schneller und sterben auch schneller ab.
Ausgeglichene Sauerstoffverhältnisse sind für ein intaktes Ökosystem entscheidend.
Nach Absterben der Algenmassen werden durch Zersetzungsvorgänge erhebliche Mengen Sauerstoff verbraucht, bis für einen aeroben Abbau nicht mehr genügend Sauerstoff zur Verfügung steht. Faulschlamm bildet sich und setzt sich auf dem Gewässergrund ab. Die Giftstoffe Schwefelwasserstoff und Ammoniak können entstehen und das Tierleben im Wasser gefährden. Sind zu viel dieser sauerstoffzehrenden Stoffe bis zur herbstlichen Durchmischung vorhanden, kann diese zu einer völligen Sauerstofffreiheit im See führen (Der See „kippt um").